4000-520-616
欢迎来到免疫在线!(蚂蚁淘生物旗下平台)  请登录 |  免费注册 |  询价篮
主营:原厂直采,平行进口,授权代理(蚂蚁淘为您服务)
咨询热线电话
4000-520-616
当前位置: 首页 > 产品中心 > Genetic_mutations > Omega Bio-Tek/E.Z.N.A.?土壤DNA试剂盒/50 preps/D5625-01
商品详细Omega Bio-Tek/E.Z.N.A.?土壤DNA试剂盒/50 preps/D5625-01
Omega Bio-Tek/E.Z.N.A.?土壤DNA试剂盒/50 preps/D5625-01
Omega Bio-Tek/E.Z.N.A.?土壤DNA试剂盒/50 preps/D5625-01
商品编号: D5625-01
品牌: omegabiotek
市场价: ¥3558.00
美元价: 1779.00
产地: 美国(厂家直采)
公司:
产品分类: 基因突变
公司分类: Genetic_mutations
联系Q Q: 3392242852
电话号码: 4000-520-616
电子邮箱: info@ebiomall.com
商品介绍

Overview

The E.Z.N.A.® Soil DNA Kit is formulated to isolate high purity cellular DNA from soil samples typically containing humic acid and other inhibitors of PCR. This kit uses a novel and proprietary method to isolate genomic DNA from a variety of environmental samples without organic extractions.

This kit has been successfully used to isolate DNA from Gram-positive and -negative bacteria, fungi, yeast, and algae that inhabit a range of samples including clay, sandy, peaty, chalky, or loamy soil samples. Isolated DNA can be used for most downstream applications, including PCR, Southern blot, and NGS analysis.

  • Reliable – Reproducible DNA purification from a variety of sample sources
  • High quality – Ready-to-use DNA eliminating PCR inhibitors using proprietary inhibitor removal technology
  • Yield – Efficient purification of DNA from even specialized samples
  • Ease of use – Contains glass beads pre-filled in 2 mL vials

Specifications

For Research Use Only. Not for use in diagnostic procedures.

FeaturesSpecifications
Starting AmountUp to 1 g
Starting MaterialSoil
YieldDependent upon sample
Elution Volume 50-100 μL
Technology HiBind® DNA Mini Column
Processing ModeManual
Throughput1-24

Kit Components

ItemAvailable Separately
HiBind® DNA Mini ColumnsView Product
2 mL Collection TubesView Product
Disruptor TubesView Product
SLX-Mlus BufferView Product
DS BufferCall for Pricing
P2 BufferView Product
cHTR ReagentView Product
XP1 Buffer---
HBC BufferView Product
DNA Wash BufferView Product
Elution BufferView Product

Protocol and Resources

Product Documentation & Literature

PROTOCOL

D5625 Soil DNA Kit

SDS

D5625 SDS

QUICK GUIDE

D5625 Quick Guide

SALES SHEET

APPLICATION NOTE

Superior Performance of Omega Bio-tek’s E.Z.N.A.® Soil DNA Kit Over CompanyM’s Soil DNA Isolation Kit for DNA Extraction from Soil Samples

Product Data

DNA purified from soil samples using E.Z.N.A.® Soil DNA Kit has higher and more consistent yield than using a leading competing product.

Figure 1. Comparison of DNA extraction method from soil samples. DNA yield determined with fluorescence-based dye quantification. 50 µL ZymoBIOMICS™ Microbial Community Standard was added to 200 mg soil samples and DNA was extracted using manufacturer’s recommended protocols. DNA was eluted in 100 µL for both manufacturers.

DNA purified from soil samples using E.Z.N.A.® Soil DNA Kit has better PCR performance than using a leading competing product.

Figure 2. Comparison of Ct values. 20 µL SYBR Green qPCR reaction. 50 µL ZymoBIOMICS™ Microbial Community Standard was added to 200 mg soil samples and DNA was extracted using manufacturer’s recommended protocols. DNA was eluted in 100 µL for both manufacturers.

E.Z.N.A.® Soil DNA Kit performs especially better for gram-positive bacteria than a leading competing product.

Figure 3. DNA yield by bacterial classes. DNA yield determined with fluorescence-based dye quantification. 0.5 mL cultured Gram-positive and Gram-negative bacteria were added to corresponding 200 mg soil samples and DNA was extracted using manufacturer’s recommended protocols. DNA was eluted in 100 µL for both manufacturers.

Publications

View Publications
  • Bao, Yun-Juan, et al. “High-Throughput Metagenomic Analysis of Petroleum-Contaminated Soil Microbiome Reveals the Versatility in Xenobiotic Aromatics Metabolism.” Journal of Environmental Sciences, vol. 56, 1 June 2017, pp. 25–35, www.sciencedirect.com/science/article/pii/S1001074216306155?casa_token=QXfnahukMoEAAAAA:H6xUoAHyfOBFs6fE1a0KcdKtiPZ53A_6EwwHMyW2uqsNhyydq52wc2CqS_UZCLFTCMB3hrpJ4yk, 10.1016/j.jes.2016.08.022. Accessed 1 June 2020.
  • Bin, Zhang, et al. “Dynamic and Distribution of Ammonia-Oxidizing Bacteria Communities during Sludge Granulation in an Anaerobic–Aerobic Sequencing Batch Reactor.” Water Research, vol. 45, no. 18, 15 Nov. 2011, pp. 6207–6216, www.sciencedirect.com/science/article/pii/S0043135411005458?casa_token=-Dxbvqho-9QAAAAA:yjdHqmoRGVk32viDMqj0l1K-hpelh9RhpMa2Z8PdTweLReQ7xB138QTS4LTnaUJIoLa_BBtHgno, 10.1016/j.watres.2011.09.026. Accessed 1 June 2020.
  • Chen, Hong, et al. “Effects of ammonia on anaerobic digestion of food waste: process performance and microbial community.” Energy & Fuels 30.7 (2016): 5749-5757.
  • Huang, Lu, et al. “Antibiotic Resistance Genes (ARGs) in Duck and Fish Production Ponds with Integrated or Non-Integrated Mode.” Chemosphere, vol. 168, Feb. 2017, pp. 1107–1114, 10.1016/j.chemosphere.2016.10.096. Accessed 9 Apr. 2020.
  • Liu, Chao, et al. “The Effects of PH and Temperature on the Acetate Production and Microbial Community Compositions by Syngas Fermentation.” Fuel, vol. 224, 15 July 2018, pp. 537–544, www.sciencedirect.com/science/article/pii/S0016236118305337?casa_token=G8sFg1-lAY8AAAAA:vc4RvQIHqKFWs7GV4IYgsFbE19hHKG64wJa-VxHX2i4bWFeht1IvIjU2sKH_DqSD7k-vhD60_yE, 10.1016/j.fuel.2018.03.125. Accessed 1 June 2020.
  • Liu, Shuang Ping, et al. “Bacterial Succession and the Dynamics of Volatile Compounds during the Fermentation of Chinese Rice Wine from Shaoxing Region.” World Journal of Microbiology and Biotechnology, vol. 31, no. 12, 22 Oct. 2015, pp. 1907–1921, 10.1007/s11274-015-1931-1. Accessed 19 May 2020.
  • Luo, Haiping, et al. “Sulfate Reduction and Microbial Community of Autotrophic Biocathode in Response to Acidity.” Process Biochemistry, vol. 54, 1 Mar. 2017, pp. 120–127, www.sciencedirect.com/science/article/pii/S1359511316304482?casa_token=UsEoVQm9jdgAAAAA:K3y18r9pkFNEGbVXRhH9NYO2kn92gUTagQO4W9ne_7__4cREpqqMoMgpy3GTE4TGCsY2GmAOpUc, 10.1016/j.procbio.2016.12.025. Accessed 1 June 2020.
  • Qin, Sijun, et al. “Forage Crops Alter Soil Bacterial and Fungal Communities in an Apple Orchard.” Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, vol. 66, no. 3, Oct. 2015, pp. 229–236, 10.1080/09064710.2015.1088569. Accessed 1 June 2020.
  • Sun, Zhenli, et al. “Effects of BmCPV Infection on Silkworm Bombyx Mori Intestinal Bacteria.” PLOS ONE, vol. 11, no. 1, 8 Jan. 2016, p. e0146313, 10.1371/journal.pone.0146313. Accessed 1 June 2020.
  • Wang, Honglei, et al. “Distribution Patterns of Nitrogen Micro-Cycle Functional Genes and Their Quantitative Coupling Relationships with Nitrogen Transformation Rates in a Biotrickling Filter.” Bioresource Technology, vol. 209, 1 June 2016, pp. 100–107, www.sciencedirect.com/science/article/pii/S0960852416302656?casa_token=cLS57Ina4g8AAAAA:JNbvH3JnbxWoT94kv786jXpCfJCgxl6uJBxSB3lvU4fyXMw4NUfFrn8wCpB6M-PtoKIRRIZqzKc, 10.1016/j.biortech.2016.02.119. Accessed 1 June 2020.
  • Wang, Wen, et al. “Enhanced Fermentative Hydrogen Production from Cassava Stillage by Co-Digestion: The Effects of Different Co-Substrates.” International Journal of Hydrogen Energy, vol. 38, no. 17, 10 June 2013, pp. 6980–6988, www.sciencedirect.com/science/article/pii/S0360319913008525?casa_token=Yp5RO0rqkckAAAAA:TQ7GNvTa5EwFEgQpDmocPa28hj0Eq3LeR6esG9BZujRWKeb9Pl8UZnzwX4c64PKz2wRwp5I902E, 10.1016/j.ijhydene.2013.04.004. Accessed 1 June 2020.
  • Zhang, Bin, et al. “Microbial Population Dynamics during Sludge Granulation in an Anaerobic–Aerobic Biological Phosphorus Removal System.” Bioresource Technology, vol. 102, no. 3, 1 Feb. 2011, pp. 2474–2480, www.sciencedirect.com/science/article/pii/S0960852410018195?casa_token=xABqGAsRc00AAAAA:3-gK60wIYoio7fBqwmlb8OM2y3fRILBwWlBaemc0pz6_fZFumW9c9gC0xMmpg_gXkfTJspCIl6o, 10.1016/j.biortech.2010.11.017. Accessed 1 June 2020.
  • Zhi, Wei, et al. “Enhanced long-term nitrogen removal and its quantitative molecular mechanism in tidal flow constructed wetlands.” Environmental science & technology 49.7 (2015): 4575-4583.
  • Zhou, Min, et al. “Evolution and Distribution of Resistance Genes and Bacterial Community in Water and Biofilm of a Simulated Fish-Duck Integrated Pond with Stress.” Chemosphere, vol. 245, 1 Apr. 2020, p. 125549, www.sciencedirect.com/science/article/pii/S0045653519327894?casa_token=fHNPjCLuBx0AAAAA:AgLxYXp1gUk5K-1Y2pEEZAU8BKUOB8t_P2NU_ZgPs7QGg70yoGzdaxrL-SvewC0Wsf7VBeflGec, 10.1016/j.chemosphere.2019.125549. Accessed 1 June 2020.
  • —. “Spread of Resistance Genes from Duck Manure to Fish Intestine in Simulated Fish-Duck Pond and the Promotion of Cefotaxime and As.” Science of The Total Environment, vol. 731, 20 Aug. 2020, p. 138693, www.sciencedirect.com/science/article/pii/S0048969720322105, 10.1016/j.scitotenv.2020.138693. Accessed 1 June 2020.
Format

Miniprep

品牌介绍
Omega Bio-Tek公司自1998年成立以来,核酸纯化技术一直处于前列.Omega 第二代Hibind 硅胶柱具有很大的灵活性,利用硅胶膜的优势,可以从动物,植物,培养细胞,凝胶和溶液中提取和纯化DNA/RNA, 产品覆盖整个核酸领域,并且稳定的质量和优质的服务一直受到全球的科研,企业客户所喜爱.2004年,Omega Bio-tek公司授权广州飞扬生物工程有限公司为中国总代理,为国内科研和企业客户进行服务.Omega Bio-Tek公司的主要客户:孟山都、美国农业部等